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A systematic account is given of the derivation of the dispersion relation for 
helicon waves in a uniform cylindrical plasma bounded by a vacuum. By retain- 
ing finite resistivity in the equations, boundary conditions present no difficulties, 
since the wave magnetic field is continuous through the plasma-vacuum inter- 
face. Two unexpected results are found. First, the wave attenuation remains 
finite in the limit of vanishing resistivity. This is due to the energy dissipated at  
the interface by the surface currents required to match the plasma wave field to 
the vacuum wave field. Zero wave attenuation for zero resistivity is recovered if 
electron inertia is included. Secondly, it  is found that waves with azimuthal 
numbers m of opposite sign propagate differently, but the sense of polarization 
at the axis of the cylinder is independent of the sign of m. 

The argument of the dispersion function is complex and numerical results were 
obtained using a computer. The method of programming is described, and results 
are given applicable to propagation in metals a t  low temperatures, or in a typical 
gas discharge plasma for the m = 0 and m = & 1 modes. 

An example of the amplitude of the wave fields as a function of radius is given 
for the axisymmetric mode, and of amplitude and phase for the m = f 1 modes. 

1. Introduction 
The name helicon, proposed by Aigrain (1960), will be used to describe low 

frequency electro-magnetic waves which propagate in a highly conducting 
medium such as a metal at  low temperatures, or in a gas discharge plasma, in 
the presence of a strong applied magnetic field. In  the presence of the wave field 
the initially straight lines of force of the applied field become helical. The dis- 
tinguishing feature of such waves is the minor role played by charged particle 
inertia; the energy density of the wave field is almost entirely that associated 
with the magnetic field of the wave. 

In  an ionized gas, waves with this property are found in the frequency range 
between the electron and ion cyclotron frequencies, and are often referred to as 
high-frequency compressional Alfv6n waves, or as low-frequency whistlers, the 
latter name being derived from the falling pitch in the audio-frequency range 
which is observed in ionospheric studies (Budden 1961, p. 266). Barkhausen 
(1919) first drew attention to atmospheric whistlers. Eckersley (1935) and 
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Storey ( 1953) extensively investigated this phenomenon. The dispersion relation 
for plane waves is given by the Appleton-Hartree formula (Ratcliffe 1959). 
More recently helicons have been observed in metals a t  low temperatures; 
a necessary condition for propagation being that the electron cyclotron frequency 
be much greater than the collision frequency (Bowers, Legendy & Rose 1961). 
Since the latter date, a number of papers on helicon waves have appeared, but 
the problem of boundary conditions has been avoided by assuming the dispersion 
relation appropriate to an infinite medium. In  the experiments of Chambers & 
Jones (1962) it  would seem difficult to justify their neglect of vacuum fields to 
the accuracy implied by their results, but the surface effects described below are 
not present in the experimental configuration used by these authors, namely 
where the medium is effectively infinite in extent perpendicular to the applied 
magnetic field. These remarks apply equally to the experiments of Rose, Taylor & 
Bowers (1 962). 

In  all the low-frequency experiments involving metals the ions are immobile, 
while in a plasma the inequality Q,7 < w/Qi (see appendix A) is usually satisfied 
and strong surface currents flow when Q,7 9 1. (Q, and Qi are the electron and 
ion gyro-frequencies respectively, T is the collision time for electrons, and w is 
wave frequency.) In  the theory given by Aigrain (1960), Bowers et al. (1961) and 
Cotti, Wyder & Quattropani (1962), theresults are correct only in the limit of plane 
waves when the surface currents, which they ignore, become small. The boundary 
conditions of Bernstein & Trehan (1 960) and Stix (1 962, p. 82) are for a plasma 
and Qe7 = 00. In  this case (see appendix A) displacement of the plasma boundary 
greatly reduces the surface currents. However, their theory is inapplicable when 
Q,7 < w/Qi where surface currents are important. Propagation of magneto- 
ionic waves has been studied in a cylindrical plasma by Formato & Gilardini 
(1962). Cylindrical waves for which Qe7 9 w/Q, have been studied by Woods 
(1962, 1964). 

It is the object of this paper to obtiin the dispersion relation for helicon waves 
propagating in a cylindrical medium bounded by a vacuum, in the regime where 
Q,T is large compared to unity but small enough for ion motion to be negligible. 
To solve the problem it is necessary to retain finite resistivity in the equations. 
The boundary conditions then require continuity of all components of the wave 
magnetic field. 

2. The model and the assumptions 

p. 23), and the modified Ohm’s law is 
Fluid equations may be obtained from Boltzmann’s equation (Spitzer 1962, 

1 m aJ 
~ + ~ ( V ~ - J X B ~ ) - T J - ~ -  = 0, 

Ne2 at 
d?+vxB 

where only the last term in linearized, and where B, is the total magnetic field, 
J is the current density, & is the electric field, N is the electron number density, 
me is the electron mass, P, is the electron pressure, 7 is the electrical resistivity, 
and v is the plasma mass velocity. The units used are rationalized M.K.S. A cool 
plasma will be considered for which electron pressure may be neglected. Ion 
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motion will be omitted so that the v x B term in (1) will be dropped. The range 
of conditions for which this assumption is justified, assuming a uniform plasma, 
is discussed in Appendix A. 

Perturbation about a zero-order state in which the current and electric field 
vanish gives the linearized form of (I), 

where E is the perturbed electric field and the other perturbation quantities are 
denoted by the appropriate small letters. B is the applied magnetic field. 
Equation (2) is to be solved in conjunction with Maxwell’s equations which, with 
neglect of displacement current (see appendix A), give for the perturbation 

(3) 
quantities 

curl b = p0 j, 

cmi E = - abp. (4) 

In  practice a plasma may be magnetically confined and the consequent steady 
surface currents may affect the wave propagation. Appendix B discusses the 
conditions for neglecting this effect. 

3. Boundary conditions 
The general solution of the fourth-order equation (( 14) and (15)) is the sum of 

four Bessel functions each multiplied by an arbitrary constant. The general 
solution of the second-order equation (22) describing the vacuum magnetic field 
is the sum of two Bessel functions each multiplied by an arbitrary constant, 
making a total of six arbitrary constants. In  general, six boundary conditions 
are necessary to eliminate these arbitrary constants to find the dispersion 
relation. The conditions that the magnetic field of the wave be finite at the origin 
and vanish at infinity require two arbitrary constants to be put equal to zero in 
the solution for the plasma fields, and one arbitrary constant to be put equal to 
zero in the solution for the vacuum field. Thus three additional boundary condi- 
tions are required to eliminate the three remaining constants. 

Integration of equation (3) and V.b = 0 across the boundary leads to the 
result that the jump [b] in the magnetic field in crossing the boundary is given by 

[n.b]=O, [nxb]=p,,j*, 

where n is the unit vector normal to the boundary and j* is the surface current 
density. With finite electron mass or finite resistivity the current density j is 
finite and so surface currents of infinite density cannot occur. The boundary 
conditions are therefore 

[b,] = 0,  [be] = 0, [b,] = 0. ( 5 )  

The components of the wave field b,, b, and b, are therefore continuous across 
the boundary at r = a. By matching the vacuum field and the plasma fields a t  
the boundary the three remaining constants may be eliminated and the dis- 
persion relation found. 

35-2 
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4. The dispersion relation 
The equations to be solved in cylindrical geometry are 

V x b = poj, 

V x E = - ab/at. 

Solutions of the form 
are considered. 

b = 6(r)  exp [i(mO + kz - wt) ]  

Taking the curl of equation (6) and using ( 7 )  and (8) yields 

(W + i ~ )  V x (V x b) - kQeV x b + (OJU;/C') b = 0, (9) 

where c is the velocity of light, u = Ne2q/me is the electron collision frequency, 
and wp = (Ne2/eome)~ is the plasma frequency. It is convenient to define a 
collision interval r such that 

Qer = Qe/u = B/Neq. 

Equation (9) may be factorized and written 

(curl - p,) (curl - p,) b = 0, (10) 

( w + i u ) p 2 - s t e k p + w w ~ / c 2  = 0. (11) 

where 16, and p, are the two roots of the quadratic 

The general solution of (10) is therefore the sum of the solutions of 

curl b = p1 b 

and curl b = P,b. 

Since V . b = 0, equations (12) and (13) may be written 

V2b = -p,2b, 

and V2b = -Bib, 

where 

The negative sign is to be taken with p, and the positive sign with p,. 
The solution of (10) for the z component, &(r),  which is finite a t  the origin is 

b^z(r) = A,Jm(y,r) + A ,  ~rn(y2~)' (17) 

where A ,  and A ,  are amplitude constants, yt = /3,2 - k2, y i  = pi - k2, and J, is 
the Bessel function of the first kind of order m. 

Equation (14) may be used to obtain the components 6,. and SB in terms of gS. 
These are 



f, Sr - a k G ( a k )  

f e  g ,  mK,(ak) 

Jm(y1a) Jm(y2a) akK,(ak) 

5. Dispersion and attenuation of the axisymmetric wave (rn = 0) 
The attenuation of helicon waves in the limit Q,r+oo shows an anomaIous 

behaviour which we illustrate for simplicity with the m = 0 wave. For m = O  
thefand g functions.defined by equations (20), (21) take the simple form 

(27) 
f r  = - (k/yJ Jl(yla),  gr = - (k/y2) Jl(y,a), 

f e  = (Pifyi) Ji(~ia), ge = ( P 2 / ~ 2 )  Ji(y2a)- 
The dispersion equation (26) then becomes 

= 0. (26) 

When Qer + co a further simplification may be made by expanding p1 and p2 
in powers of ( Qe~)-l .  Thus, when v 9 w 

and 

P1 = New,u,/Bk + O( Q,r)-l, 

P2 = - ikQer - New,u,/Bk + 0(Qe7)-l. 

(29) 

(30) 
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In  the limit f2,7-+00, 1P2/kl -+a, and y2+P2; aP2 E iakQ,7 is therefore a large 

When (31) is satisfied, the Bessel functions Jo(B2a) and J1(P2a) in equation ( 2 8 )  
imaginary number provided ak ( ~ , ~ ) - i *  (31) 

have large imaginary arguments, and since 

equation (28) reduces to 

Jm(P2a)/Jn(P2a)-+ 1 as iP2a+co for all m and n,  

The occurrence of i in equation (32) implies that k has a non-zero imaginary 
part for real w. It follows that in the regime where Q,7 9 1 9 w/v and 
ak 9 (Oe7)-l, wave attenuation remains finite but independent of Q,7. In  
figure 1 an example is given showing the attenuation curve (labelled C) extra- 
polated to !2,7 = co and this may be seen to be comparable to the residual 
damping arising from volume currents. 

When w / v  9 1, electron inertia determines the structure of the surface currents 
and the wave attenuation vanishes as wIv+ 00. 

01 I I I I I 1 1 1 1  I I I I I I 1 1 1  I I I I I I I I ]  
0.1 I 10 100 

wlwo 

FIGURE 1. The ordinate is the attenuation constant for travelling waves, defined so that 
the wave amplitude decreases to l ie  of its initial amplitude in a distance z = l/ki. The 
wave frequency w is given relative to wo = B/ne,uoa2. Curve A, attenuation constant for 
m = 0 and Q,T = 20; curve B, attenuation constant form = 0 and f2,~ = 20 when surface 
currents are ignored; curve C, attenuation constant due to surface current alone. 

6. The method used for numerical solution of the dispersion relation 
Numerical solutions of equation ( 2 6 )  were found for m = 0 and m = 1 waves 

of low radial wave number which satisfy the inequality Qe 9 v 9 w .  For travel- 
ling waves the real and imaginary parts of k are required for real w ,  and for 
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standing waves thmeal and imaginary parts of w for real k. The computational 
procedure will be illustrated for the travelling m = 0 wave. The parameters 
w ,  Q,, v, wp are assumed to be specified. 

If k = k,+ik, then the dispersion equation (26), represented by D(w, k) = 0, 
can be expressed in the form 

D(w, k) = U(W,  k,, ki) + iV(w, k,., ki) = 0, (33) 

and the relation between w ,  k, and k, must be such that U and V are simul- 
taneously zero. By choosing a sequence of values of k, and ki and calculating 
the corresponding value of U ,  a polyhedral surface may be constructed. A 
different polyhedral surface exists for each w. The intersections of surfaces with 
the U = 0 plane give closed curves on which U(w, k,, kJ = 0. A similar procedure 
yields the value of k, and k, for which V = 0, i.e. the curve V ( w ,  k,, ki) = 0. 
Superposition of these two sets of closed curves gives the relation between k, and 
k, which simultaneously satisfies U = 0, V = 0. These curves intersect in pairs 
at right angles at two points. The intersection of these curves locate the poles and 
zeros of the dispersion relation, together with the branch points in a specified 
region of the complex plane. The two sets of curves U = 0, V = 0 were plotted 
and superimposed by an automatic graph plotter. 

Guidance in the choice of values for k, and k, was obtained as follows. If the 
attenuation of the wave is small, solutions are expected to lie in the neighbour- 
hood of the points for which p1 is real. 

If p1 is assumed real, then equation (1 1) can be written 

When w < u, (34) represents a hyperbola in the k-plane defined by 

kik, = WVW~/Q:C~. (35) 

wi = (uwi/k2i2:c2) GJ:. (36) 

Similarly for standing waves p1 is real along a parabola in the w-plane 

PI = p2 is a trivial solution of the dispersion relation for all m. For this case 
the wave fields vanish, and the solution corresponds to a branch point in the 
complex k-plane. 

The solutions of equation (16) for p may be regarded as functions of six 
independent parameters : 

aP = ski, O r l Q e ,  ~ i / Q e ,  v/Qe, w/wo), (37) 

where wo = B/Ne,uoa2. 

The parameter w,/Q, appears only through the electron inertia which, under 
the conditions studied (v 9 w ) ,  can be neglected. The parameter u/Q, accounts 
for the attenuation of the waves, but only affects the dispersion curves to second 
order in this parameter. 
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Figure 2 shows the m = 1 dispersion function in the complex w-plane; the 
first-order poles lie on a parabola and the simple zeros of the function lie near the 
poles. The poles were distinguished from the zeros by plotting the contour 
U = const. (indicated by 3 in figure 2 )  as well as the contours U = 0 ,  V = 0 
(indicated by 1 and 2 respectively in figure 2). Since D and D + const. have 
the same poles but different zeros, the contours 1 and 3 cut 2 in the common pole 
and in two other points which are the zeros of D and D + constant. 

6 

0 

FIGURE 2. The dispersion function D = U+iV (equation (33)) in the complex o-plane 
for a standing wave with wz = 1 and f i , ~  = 10. Curve 1, contours of U = 0 ;  curve 2, 
contours of V = 0;  curve 3, contours of U = 0.1. 

Figure 3 shows the m = 0 dispersion function in the complex k-plane. The poles 
and zeros lie near a hyperbola. The point C is the branch point of the dispersion 
function and the line CD along which the contours of real and imaginary part 
run together is determined by the choice of the negative real axis as the branch 
cut of ,/Z in the 2-plane. This method gives good starting-points for iterative 
solution of the dispersion relations and, if necessary, can produce arbitrarily 
accurate results by looking more closely a t  any desired root with a finer mesh of 
points. More accurate solutions of the dispersion relations were found by 
iteration using Muller’s method, in which the function is approximated by a 
quadratic, by the rule of false position, and using a bilinear approximation to 
the function. The results for travelling waves are shown in figures 4-6, and for 
standing waves in figures 7 and 8. These methods have been incorporated in 
a multi-purpose programme for solving general complex eigenvalue problems 
(McNamara 1964). 
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FIGURE 3. The dispersion function D = U + i B  (equation (33)),  in the complex k-plane 
for a travelling wave with rn = 1 and Q,T = 10. Curve 1,  contours of U = 0; curve 2, 
contours of V = 0; curve 3, contours of U = 0.1 ; curve AB, contour corresponding to the 
trivial solution for which wave field vanishes, i.0. PI = /I2. 

0 10 20 30 40 50 

wiwo 

FIGURE 4. The dispersion relation for travelling waves; curve A, plane wave; curve B, 
rn = 0 and n = 1; curve C, rn = 1 and n = 1 (first radial mode); curve D, rn = 1 and 
n = 2; curve E, rn = - 1  and n = 2. 
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FIGURE 5. The attenuation constants for travelling waves with m = 0 and 1 and 
values of a , ~ .  For Q,T > 10, linear interpolation in (L2,7)-1 may be used. 
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FIGURE 6. The attenuation constants for travelling waves with 
m = 1 and m = - 1 , m  = 2 and Cl,7 = 30. 

two 
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7. The radial variation of the wave fields for m = 0 
It was not possible, a priori, to determine the boundary conditions for the 

case of zero resistivity because the magnitude of the surface currents are not 
known. However, by allowing Q,T to tend to infinity the radial variation of the 
wave fields in the neighbourhood of the plasma vacuum interface can now be 
obtained . 

ak, 
FIGURE 7. The dispersion relation for standing waves with 

rn = 0 , m  = 1 andn = 1. 

Using equations (17)-(21), (23)-(25), and assuming continuity of the wave 
field across the boundary (0,~ finite), the constants A,, A ,  and A ,  may be 
evaluated in terms of the f and g functions at r = a (equation (27)). For the case 
m = 0 the three components of the field are 

An amplitude factor common to each component has been taken as unity. 
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FIGURE 8. The attenuation constant for standing waves with m = 0, n. = 1. 

Linear interpolation in ( Q , T ) - ~  may be used. 

In  the limit Q,r-+co the terms containing PZ and yz simplify, since ei4,-+m, 

(39) 

(40) 

iy, + GO. For instance 

80 w ~ 1 ( y , r ) / ~ l ( y l a )  - ~ X P  [-akQer(l - r / a ) ~ -  

8, N l /kQer  = wavelength/27rQer, 

The resistive field is finite only in a boundary region of thickness 

and can' be written in the limit R,T -+ GO as a discontinuous function, d(a - r ) ,  
where I d(a-r )  = 1 if a = r ,  

= 0 otherwise. 
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It is seen from equation (42) that both b, and b, change discontinuously at the 
plasma boundary, the terms involving the d-functions giving the magnitude of 
the jump. 

For finite Qe7 the fields vary smoothly through the boundary and computed 
magnetic field profiles are shown in figure 9 for the case Q,7 = 10 and m = 0. 
The modulus of the fields is plotted since there is a phase difference between 
the two terms of the expression determining the field. The large field gradients 
near the boundary are apparent and correspond to large current densities 
near the surface. 

Vacuum 

I 

1 .o 
r ia 

FIUURE 9. The amplitude of the magnetic field components as a function of radius for 
m = 0, n. = 1, Q,r = 10, for travelling waves. The dotted curve F to C is the amplitude 
of the b, component in the absence of surface currents. The b, field due to  surface currents 
is referred to as the ‘skin field’. The modulus of the total field is the curve from P to H .  

8. Wave polarization 
In  an infinite uniform plasma containing a uniform magnetic field there exist 

two waves of opposite polarization; the right-handed one is a propagating wave 
and the left-handed one is evanescent in the limit Q,T-+oo. In  the plasma 
cylinder considered here, both types of disturbance couple together to produce 
the resultant wave which propagates according to the dispersion relation (26). 
This dispersion relation is even in ak and so, for a given azimuthal mode number 
m, the same wave can be propagated up or down the magnetic field. However, 
the dispersion relation is not symmetric in the sign of the azimuthal mode 
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number, so that negative-m modes propagate differently to positive-m modes for 
m 4 0. 

In  considering the polarization of these cylindrical waves it is necessary to 
distinguish between the m number and the polarization. The former determines 
the direction of rotation of the field pattern, and the latter the direction of 
rotation of the magnetic field vector in the (r,  €')-plane. This is demonstrated in 
figure 10 where the amplitude and phase of each of the three field components of 

8- 
7 -  
6 -  

60 

4 -  b, 

2 -  bz 

9= 5 -  

3 -  

1 -  
~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

r ia 

m 

d 
1 

* 
.3 

I I I I I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ria 
FIGURE 10. Amplitude and phase of field components for m = 1, n = 2, !2,7 = 20, 
ak, = 2.56 and w/wo = 14.5. The top graph shows the phase 4 of each field component as 
a function of radius. Note that b, leads b, by 90" over most of the radius. The lower graph 
shows the amplitude of the field components as a function of radius. 

an m = 1 right-handed helicon wave with one radial node are plotted as functions 
of radius. In  the interior of the cylinder the phase of the azimuthal field is seen 
to lead that of the radial field representing a right polarized field at every point. 
The phases of the azimuthal and axial fields change rapidly near the boundary 
where the resistive field contributes appreciably to the total fields. For negative 
m numbers competition is to be expected between the right handedness of the 
basic propagating disturbance and the left handedness of the field pattern. This 
is illustrated for an m = - 1 helicon wave in figure 11 where it is seen that the field 
is right polarized near the centre of the cylinder, changes through a region of left 
polarization to very nearly linear polarization for the rest of the interior of the 
cylinder, and finally becomes left circular polarized in the region of the boundary. 
Finally, because of the competing effects of the field polarization and direction 
of rotation of the field pattern, it  is reasonable to find that solutions of the 
dispersion relation for negative m must have at  least one radial node. The field 
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patterns given in figures 9-11 and the dispersion and damping curves given 
below are completely representative of the infinity of possible solutions of the 
dispersion relation (26). 

8 
7 
6 

3 
2 

1 
0 

m -la 
.3 

d 
1 
h 

U 2 

L I  I I I I I I I 1 -  

V I  I I I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 : 0 

T l a  

FIUURE 11. Amplitude and phase of field components for m = - 1, n = 2, C ~ , T  = 20, 
ak, = 2.0, w/wo = 14.5. The top graph shows the phase q5 of each component a8 a function 
of radius. Note that b, leads br by 90" up to T = 0 . 2 ~  but lags behind b, by 180" for 
r > 0.2a except a t  the boundary. The lower graph shows the amplitude of the field 
components as a function of radius. 

9. Discussion 
The dispersion relation given above (equation (26)) was derived by including 

finite resistivity in the generalized Ohm's law (equation (6)). It will now be 
shown that if both electron inertia and plasma resistivity are omitted from 
Ohm's law, by setting me equal to zero, then the dispersion relation cannot be 
found. 

From the linearized Ohm's law, which is 

E - ( l / N e ) j x B = O ,  

and Maxwell's equations with displacement current neglected, an equation for b 
may be found. The previous analysis yields this equation by putting me = 0 in 
equation (9). For fields finite at  r = 0, the solution for the field components 
involves one arbitrary constant A,. 

The magnetic field components in the vacuum are as given in equations 
{ 23)-( 25) and involve another arbitrary constant A,. With neglect of electron 
mass, infinite surface current densities are permissible and the boundary condi- 
tions on the 8 and z components of b (equation 4) involve unknown surface 
currents j: and j,*. Therefore there is only one determinate boundary condition 
on the magnetic field, namely continuity of b,. However, there are two constants 
A ,  and A,. The remaining boundary condition (on the tangential component of 
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the electric field) plays no part in determining the dispersion relation when dis- 
placement current is neglected, but serves only to eliminate the third constant 
in the vacuum electric field. Therefore the number of constants exceeds the 
number of boundary conditions, and the dispersion relation cannot be found. 

The boundary conditions on the tangential electric field have not yet been 
considered because, with neglect of displacement current, they do not affect the 
dispersion relation. To complete the analysis of helicon wave propagation, 
however, this boundary condition must be introduced to determine the vacuum 
electric field. 

Integration of the equation (4) across the boundary gives 

[n x El = 0, 

where n is the unit vector normal to the boundary. The tangential electric field 
is therefore continuous across the boundary, and the vacuum electric field can 
be determined. 

Woods (1962, 1964) has introduced a perturbation electric dipole layer of 
density r on the boundary in which case the boundary condition is (Stratton 
1941) [n x El = (l/eo) n x V r .  
However, the electric field of the wave sets up a charge separation which may be 
described by a volume polarization analogous to that in a dielectric (see 
Appendix A for the dielectric tensor). An additional and arbitrary dipole layer 
is therefore superfluous to the theory and so must be discarded. 

A noteworthy result is the fact that there are conditions where wave attenua- 
tion is independent of the collision frequency, provided electron inertia and ion 
motion can be neglected, i.e. v B w and Qe/v < w/Qi .  

The characteristic distance z, for the amplitude of a wave to decrease to l / e  of 
its initial amplitude is zc = l/k{. The curve C in figure 1 for m = 0 and Qer+cc 
has a value for aki which does not fall below 0.1 over a range of frequencies, 
1 < w/wo < 100. The characteristic distance for attenuation over this range of 
frequencies is, therefore, never greater than 1 Oa. This anomalously large attenua- 
tion is due to the energy dissipated in collisions by surface currents of high 
current density. It would not be present if the plasma was bounded by an ideal 
conductor. 

Appendix A 
Conditions for neglect of ion motion and displacement current 

The complete set of linearized equations to be solved when the ion motion and 
displacement current are taken into account and plasma pressure neglected are 

po(aV/at) = j x B, (A 1) 

me aj 
Ne Ne2 at 
1 

E = -j x B+yj  +- --V x B, 

V x E = - ab/at, 

V x b = poj + , ~ ~ ~ ~ ( a E / a t ) ,  
(A 3) 

(A 4) 

V.b = 0, (A 5) 

where po is the equilibrium ion density and V the plasma velocity. 
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Write (A 4) in the form 

V x b = poco a{( 1 + X )  . E}/at, (A 6) 

where x is the polarizability tensor for the magnetized plasma and I is the unit 
tensor. Consider a perturbation with a time dependence of the form eiot so that 
(A 1) becomes 

iwpoV = j x B. 

Substituting this result into (A 2) yields 

iwco E = (8, + is,) j + is, j x 9, - &,(G1. j) 9,, (A 7)  

where 6, = w(v+iw)/w;, ,  8, = One/@;,, 8, = szyw;i, (A 8) 

and g1 is a unit vector parallel to the magnetic field. The dimensionless para- 
meters, &,, &, and S,, represent electron inertia and resistance, the Hall effect, 
and ion inertia respectively. 

j may now be eliminated from (A 4) using (A 7) so that the elements of the 
polarization tensor are 

It is evident that ion motion may be neglected if 8, 9 8,. Written in terms of 
characteristic frequencies this is 

In  a high temperature fully ionized gas in which a strong magnetic field is present 
it is not uncommon for Q,/v to have values exceeding 100. In  this case ion 
motion continues to play an important role under circumstance where the 
displacement current can be neglected and the wave frequency is 100 times the 
ion gyrofrequency. 

Equations (A 1) and (A 2) are based on the assumption that the ion mass is 
much larger than the electron mass which is not necessarily true for an electron- 
hole plasma in a semi-conductor. 

The condition for the neglect of displacement current is x 9 1. Since the unit 
tensor I has diagonal elements only, it follows from (A9) that the required 
conditions are 

6, < 1 and (6,+i61)/{(63+i&l)2-&~} 9 1. 

For the waves studied here it is assumed that S1 9 6, and (A 11) reduces to 

w/Q2, @ Qe/v. ( A W  

(A 11) 

8, < 1 and &,/(S,"+&~) 9 1. (A 12) 

The following two examples illustrate circumstances for which the inequalities 
(A 11) are satisfied. 

Typical values for the frequencies involved for helicon wave propagation in 
metals at liquid helium temperatures, are 

w = 100, v = lo9, Qe = 2 x loll and wpe = 4 x 10l6, 

so that S, z and S l / ( & ~ + 8 ~ )  x 1025. 
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For helicon wave propagation in partially ionized argon gas, the following 
frequencies are typical 

w = 107, v = 108, Qe = 2 x lo9, wPe = 6 x lolo, 

Sti = 3 x lo4 and wpi = 107, 

so that 8, = 3 x 10-7, (8, + isl)/{(a3 + is+ a;] NN 2 x 1 0 5 .  

It remains to determine the restrictions on the phase velocity of the wave 
V, = w/k ,  for the neglect of ion motion and displacement current. The electric 
field can be eliminated from (A 3 )  and (A 6 )  to yield 

V X  ((I+X)-1.Vxb)-W2~,pob = 0. 

Some further manipulations yield the following equation for the z-component 
of b: 

where D = V2+eopow2. 
Inspection of equation (A 13) yields two further well known conditions on the 

phase velocity of the waves. For ion motion to be negligible, the phase velocity 
must be much greater than the Alfvkn speed, that is 

v; % B2/ruoPo. ( A  14) 

For displacement current to be negligible the phase velocity must be much less 
than the velocity of light in vacuo 

v, Q (PO",)--*. 

Finally, it can be seen that if either the displacement current or ion motion terms 
are small compared with the resistive terms so that 

8, > 83 + s:/(l +&I, (A 15) 

then the highest derivatives in (A 13) will be of the form v2V4 instead of vV4 and 
there will be an appreciable contribution to wave attenuation from surface 
currents. This was the case discussed in $ 5  where, in addition, 8, a,, i.e. 
a,/. > 1 .  

Appendix B 
Conditions for neglect of surface current in a magnetically conJined plaema 

We consider B cylindrical plasma with a small electron pressure gradient and 
carrying a small steady confining current J, in addition to the wave current j. 
Ohm's law is then as follows: 

E = ( l / N e )  [ J, x b + j x B,] + 7.i - ( l / N e )  VP,, (B 1 )  

where the usual linearization has been effected. 
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If S, = thickness of current layer confining the plasma (in practice J, would be 
mainly a surface current when Qe7 9 I ) ,  S, = l / k Q , ~  = boundary-layer thick- 
ness of helicon wave when Q,T $ 1, then the most stringent conditions on Jo 
will clearly obtain when S, > 8,. Comparison of the terms in J, with those in j 
in equation (1) gives: 

N (l/Q,7) poJ,/kB, for a > r > la-SB1. 

We have used that ratio b / j  found in the above theory for Jo = 0. The terms in 
J,, are then negligible compared to those in j provided 

PO Jo/kBo < (Qe7)F1- 

This is the restriction to be placed on J, if it  is not to sensibly affect helicon 
propagation. 
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